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Abstract 

Analysis of particle interaction in the laboratory frame of 
storage rings is often complicated by the fact that particle 
motion is relativistic, and that reference particle trajectory 
is curved. Rest frame of the reference particle is a conve- 
nient coordinate system to work with, within which particle 
motion is non-relativistic. We have derived the equations 
of motion in the beam rest frame from the general relativ- 
ity formalism, and have successfully applied them to the 
analysis of crystalline beams [ 11. 

1 DERIVATION 
The motion of charged particles under Coulomb interac- 

tion and external electromagnetic (EM) forces can be most 
conveniently described in the rotating rest frame of the ref- 
erence particle of which the orientation of the axes are con- 
stantly aligned to the radial, tangential, and vertical direc- 
tion of the motion. In this frame, particle motion within the 
beam bunch is non-relativistic. 

We derive the equations of motion using the general rel- 
ativity formalism. First, we express the equations of mo- 
tion in a general tensor formalism. The Lorentz force ex- 
perienced by the particle is constructed as a product of the 
EM field tensor and the four-velocity. Starting from the 
laboratory frame, the EM field tensor is written by means 
of the components of the EM fields. Then, tensor algebra 
is used to transform this field tensor into the rest frame. 
With a similar transformation, the metric tensor of the rest 
frame is also obtained. The equations of motion can thus 
be constructed in the rest frame which include centrifugal 
force, Coriolis force, time-dependent external EM forces, 
and electrostatic Coulomb forces. Finally, these equations 
are re-scaled in terms of dimensionless quantities for the 
convenience of computer simulation and analysis. 

1 .l Tensor formalism 
Adopting the formalism used by M$ller,[2] we consider 

the motion of a particle in an arbitrary system of coordi- 
nates (a$, where i = 1,2,3,4 indicate the space-time 
components. The metric tensor {gij} is defined in terms 
of the differential line element ds as ds2 = gijdxidxj, 
where the summation is performed over the four indices. 
Let xi = xi(r) be the equation of the time track of the 
motion, T being the proper time of the particle. The con- 
travariant components of the four-velocity are 

* Work performed under the auspices of the US Department of Energy 
t weil @bnl.gov, on joint appointment at ORNL and BNL 

where uL = dxl/dt are the contravariant components of the 
spatial velocity, the Greek letter L indicates the three spatial 
components, dt = I’dT, c is the speed of light, and 

0 

-4 
r= (-g& -& 2v$ 

1 1 
(1) 

is the generalized Lore& factor. The contravariant com- 
ponents of the four-momentum are Pi = m,#, where mo 
is the proper mass of the particle. 

Acted upon by a non-gravitational four-force {Fi}, the 
equations of motion of the particle can be written as 

DPi 
- = gi”Fk, 
dr 

FiUi 3 0, 

where the 4 x 4 matrix {gij} is the inverse of {gij}, and 
the covariant differentiation is defined as 

DPi dPi -Ed7+r$Ukpl, rik=$ 
dr 

Among the non-gravitational forces, the external EM fat% 
acting upon the particles is expressed by means of the EM 
field tensor { Fij } as 

Fi = :FikUk:, 
c (4) 

where e is the electric charge, and {Fij} is anti-symmetric. 
The Maxwell’s equations are given by 

a& aFk1 afli --- 
ax1 + axi + axk = O? . 

$~$(dii@‘~) = @$ 
(5) 

” whereFij = g’g jm Fl,, ]g] is the absolute value of the de- 
terminant of the metric {gij}, and pc is the charge density 
measured in the system of inertia. 

1.2 Laboratory@ame 
In the Cartesian coordinate system of inertia (Xi), the 

so-called laboratory frame, Eq. 2 can be written in the con- 
ventional vector form. In this frame, the only non-zero 
components of the metric tensor are 

911 = Q22 = g33 = 1, and gd4 = -1. (6) 

In terms of the conventionally defined electric and mag- 
netic fields 

E = (-%,E2,E3), B = (&,B2,B3), (7) 



the EM field tensor is 

0 B3 -B2 El 
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-El -Ez -E3 0 

{g~j} of the rest frame is related to {gij} of the laboratory 
frame by the relation gt = i j &z&mg~m Using the transfor- . 
mation matrix, the contravariant components of a vector 

(8) {ui} in the laboratory frame are transformed into the rest 
frame as o’i = c$uk. On the other hand, the covariant com- 
ponents of a tensor of rank 2, e.g. the EM field tensor, are 

It is straightforward with these expressions to verify that 
Eq. 2 is equivalent to the equations 

m. 4W -=eE+zuxB, moc’g=eu.E, (9) 
dt 

where dt = l?dT, and l? = (1 - u~/c~)-~‘~ is in this case 
the Lorentz factor. 

1.3 Beam rest frame ofJixd orientation 
Consider a reference particle circulating around the ver- 

tical axis X2 with a uniform angular velocity w at a radius 
R. Its time track {fi} may be described in the laboratory 
frame in terms of the proper time r 

fi(~) = (Rcos8,O,Rsin6,Tr), (10) 

where 13 = WIT is the revolution angle, y = (1 - ,B”) -1’2, 
and PC = Rw is the velocity. Introduce a rigid system 
of coordinates (xi) which follows the reference particle in 
its motion, so that ‘the particle is constantly situated at the 
origin of this frame of reference, and that the spatial axes 
have constant orientations. The transformation connecting 
the variables (Xi) and (xi) are 

Xi = fi(r) + &iKxKE, and x4 = T, (11) 

where the check (‘) denotes the inverse operation, the sum- 
mation over K is on spatial components 1,2,3. The coef- 
ficients oij are obtained by means of successive infinitesi- 
mal Lorentz transformations without rotation of the spatial 
=s,EI 

transformed as F~j = ~Z@jrnF~~. With these relations, the 
equation of motion in the beam rest frame of fixed orienta- 
tion can be obtained from Eq. 2 by an explicit evaluation. 

1.4 Rotating beam restfiame 
I The equations of motion can be greatly simplified in 

terms of the variables tangential and normal to the direc- 
tion of the motion of the reference particle. We thus seek 
for another transformation into the rotating beam rest frame 
of which the orientation of the spatial axes are constantly 
aligned to the radial (x), tangential (z), and vertical (9) di- 
rection of the motion of the reference particle. 

Define the rotating beam frame as the rest frame of 
which the orientations of the spatial axes x and z rotate 
relative to those of the fixed orientation x 1 and x3 

\ ypsine 0 -ypcosB y / 
(12) 

whereoil = cos0cos&+ysin0sin&,ars = sinflcos&- 
y cosBsif!& a31 = cosBsin_8 - ysint9 cos8, a33 = 

sin @sin 0 + y cos 19 cos 0, and 9 = wy2r = $3. The fact 
that 6 differs from the revolution angle 0 by the Lorentz 
factor y is the consequence of the Thomas precession. 

To obtain the metric tensor of the rest frame, we need 

Express the electric and magnetic fields in the laboratory 
frame in terms of the tangential component in z and the 
normal component in x 

E, = Ercos0+Essin0, B,=B1cos0+B3sinB 
Ey = E2, B, = B2 
E,=-Eisin19+EscosB, B,=-Blsin0+B3cosB 

(15) 
The equations of motion can be obtained from Eqs. 2 and 
3 by using Eq. 8 and the transformation relations as 

!$! (z- 2y2wb - y4w2x) - mol?y2w2R(1 - X) = 

= e(l - x)EL + k [Big - Bh(8 + y2wx)] - 2, 

yg = e(l- x)Eb+ 

-t-~[~j(i+y~~z-~~(j:-yZ~~)]-~, 

? (a + 2y2wk - y4w22) = 

= e(l - x)EL + 5 [Bb(i - y2wz) - B$] - g, 

(16) 
to derive the relation between the line elements of the two where 
coordinate systems. Differentiation of Eq. 11 gives 

’ E; = 6% - &,), B; = r(Bz + PE,) 

dXi = &dxK + f.&) + &c(T) -x” 
dr 1 

dr = &$dxj, 
E; = r& + P&z), B; = y(By - P&4 (17) 
E; = Ez, B; = B, 

L _I 

where {o$} = {&$}- 1 
(13) 

is the transformation matrix be- are the electric and magnetic fields after a Lorentz transfor- 
tween the line elements of the laboratory and the rest frame. mation without rotation, and V is the electric potential. For 
Let the prime (‘) denote the rest frame. The metric tensor particles of the same bunch, the potential VC describing the 



Coulomb interaction is 

VC(~,Y,~) = c e2 

i J(Xj - X)2 + (Yj - Y)2 + (Zj - Z)" 

where the summation is performed over all the other parti- 
cles j and their image charges. The potential V,.f describ- 
ing a radio-frequency (rf) electric field E, in the laboratory 
frame satisfies 

awx,Y,z) = -eE 
a- 8 (19) 
Vi; 

Since the particle motion in the rest frame is non- 
relativistic, the Lorentz factor l? is simplified as 

r M (1 - x)-1, with x q p2y2i. (20) 
Typically, the dimensionless quantity x is much smaller 
than 1. The terms on the left hand side of lZq. 16 in- 
clude the centrifugal and Coriolis forces. Those on the right 
hand side are external EM forces and electrostatic Coulomb 
forces. Again, since the particle motion is non-relativistic, 
the magnetic force produced by the motion of the particles 
is negligible compared with the electrostatic force. 

2 STORAGE RING EXAMPLE 
We consider the case that the beam is guided by a bend- 

ing field Bo satisfying 

eBoR = moc2Pr, (21) 
and focused by a quadrupole field of gradient B 1 

B, = Bly, By = Bo + BIX, B, = 0, (22) 
where B1 may vary for different piece of magnets, and the 
field variation at the magnet end is neglected. The equa- 
tions of motion is simplified by linearizing Eq. 16 

av 
mo (ii - y2wi) - moy2w2Rx = -e@yBlx - -, 

ST7 8X 

moji = ePrBly - c, 

a!W 
?nQ (z+y2wL+) =-y&. 

(23) 
Here, x has been assumed small compared with 1. 

2.1 Dimensionless variables 
Eq. 23 can be simplified in form when it is expressed 

in terms of dimensionless variables. Let n G -BlR/Bo 
represent the strength of the focusing magnetic field, and 

[ z (Q,R~/~~~~)~‘~ be a characterization of the inter- 
particle distance in the presence of Coulomb interaction in 
the storage ring, where TO = e2/mac2 is the classical ra- 
dius of the particle. Express the time t in unit of R/&c, the 
spatial coordinates x, y, and z in unit of I, and the energy 
in unit of p2r2e2/t. Eq. 23 becomes in these units 

I 
$-yi+(-y2+l-n)x=-g, 

ti+ny=-E, 

aa 
(24) 

f+yj,=.--. az 

Here, the dots denote differentiations with respect to the 
normalized time t. The normalized Coulomb potential and 
rf potential satisfy 

Vcb, 3172) = c 1 

j d(Xj - X)2 + (yj - Y)2 + (Zj - 2)2 

cm 
and 

2 
(26) 

In the normalized units, the revolution period of the refer- 
- ence particle in the storage ring is 27r. 

2.2 Hamiltonians 
Using the canonical momentum (P% , Pzl, P,), the parti- 

cle system of Eq. 24 can be described by the Hamiltonian 

H= 5 (Pi + Py” + Pz) -yxPz+ [(l - n)x2 + ny2]+V 

(27) 
where the cross term -rxPZ describes the coupling be- 
tween the tangential and normal motion. 

2.3 General case 
The formalism presented in the previous sections can be 

easily generalized to a storage ring that consists of both 
bending and straight sections. Denote the guiding field and 
bending radius in the bending section as Bo and R, respec- 
tively. The equations of motion in the bending sections are 
given by Eq. 24, while the system Hamiltonian.is given by 
Eq. 27. In the straight sections where the guiding field is 
zero, the strength n of the focusing field can be defined by 
normalizing the gradient B1 in the straight section to B,-, in 
the bending section. The Hamiltonian becomes 

H = f (Pz + Pi + Pz) + a [-nx2 + ny2] + V (28) 

If the circumference of the ring is C, the revolution period 
of the reference particle is C/R in the normalized unit. 

3 DISCUSSIONS 
The equations of motion derived for the beam rest frame 

made possible direct utilization in storage ring analysis of 
techniques like the molecular dynamics methods developed 
typically for non-relativistic systems. These equations can 
be easily generalized for storage rings containing multipole 
magnets and multi-species of ions. [3] 

Derivations presented in this paper are by-products of 
a study on crystalline beams in collaboration with A.M. 
Sessler and X-P. Li. 
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